Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 791
Filtrar
1.
PLoS One ; 17(2): e0263839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213543

RESUMO

The ubiquitin/proteasome system controls the stability of Runx2 and JunB, proteins essential for differentiation of mesenchymal progenitor/stem cells (MPCs) to osteoblasts. Local administration of proteasome inhibitor enhances bone fracture healing by accelerating endochondral ossification. However, if a short-term administration of proteasome inhibitor enhances fracture repair and potential mechanisms involved have yet to be exploited. We hypothesize that injury activates the ubiquitin/proteasome system in callus, leading to elevated protein ubiquitination and degradation, decreased MPCs, and impaired fracture healing, which can be prevented by a short-term of proteasome inhibition. We used a tibial fracture model in Nestin-GFP reporter mice, in which a subgroup of MPCs are labeled by Nestin-GFP, to test our hypothesis. We found increased expression of ubiquitin E3 ligases and ubiquitinated proteins in callus tissues at the early phase of fracture repair. Proteasome inhibitor Bortezomib, given soon after fracture, enhanced fracture repair, which is accompanied by increased callus Nestin-GFP+ cells and their proliferation, and the expression of osteoblast-associated genes and Runx2 and JunB proteins. Thus, early treatment of fractures with Bortezomib could enhance the fracture repair by increasing the number and proliferation of MPCs.


Assuntos
Bortezomib/farmacologia , Proliferação de Células/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Fraturas da Tíbia/enzimologia , Animais , Proliferação de Células/genética , Subunidade alfa 1 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Consolidação da Fratura/genética , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/enzimologia , Complexo de Endopeptidases do Proteassoma/genética , Fraturas da Tíbia/tratamento farmacológico , Fraturas da Tíbia/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
2.
J Biol Chem ; 298(3): 101639, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090892

RESUMO

Phosphatidylinositol-4-phosphate 5-kinase type-1 gamma (Pip5k1c) is a lipid kinase that plays a pivotal role in the regulation of receptor-mediated calcium signaling in multiple tissues; however, its role in the skeleton is not clear. Here, we show that while deleting Pip5k1c expression in the mesenchymal stem cells using Prx1-Cre transgenic mice does not impair the intramembranous and endochondral ossification during skeletal development, it does cause osteopenia in adult mice, but not rapidly growing young mice. We found Pip5k1c loss dramatically decreases osteoblast formation and osteoid and mineral deposition, leading to reduced bone formation. Furthermore, Pip5k1c loss inhibits osteoblastic, but promotes adipogenic, differentiation of bone marrow stromal cells. Pip5k1c deficiency also impairs cytoplasmic calcium influx and inactivates the calcium/calmodulin-dependent protein kinase, which regulates levels of transcription factor Runx2 by modulating its stability and subsequent osteoblast and bone formation. In addition, Pip5k1c loss reduces levels of the receptor activator of nuclear factor-κB ligand, but not that of osteoprotegerin, its decoy receptor, in osteoblasts in bone and in sera. Finally, we found Pip5k1c loss impairs the ability of bone marrow stromal cells to support osteoclast formation of bone marrow monocytes and reduces the osteoclast precursor population in bone marrow, resulting in reduced osteoclast formation and bone resorption. We conclude Pip5k1c deficiency causes a low-turnover osteopenia in mice, with impairment of bone formation being greater than that of bone resorption. Collectively, we uncover a novel function and mechanism of Pip5k1c in the control of bone mass and identify a potential therapeutic target for osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Células-Tronco Mesenquimais , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Remodelação Óssea/fisiologia , Reabsorção Óssea/enzimologia , Reabsorção Óssea/metabolismo , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/enzimologia , Osteoclastos/metabolismo , Osteogênese , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligante RANK/metabolismo
3.
Commun Biol ; 4(1): 1315, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799676

RESUMO

Telomere maintenance and tumor cell differentiation have been separately implicated in neuroblastoma malignancy. Their mechanistic connection is unclear. We analyzed neuroblastoma cell lines and morphologic subclones representing the adrenergic (ADRN) and mesenchymal (MES) differentiation states and uncovered sharp differences in their telomere protein and telomerase activity levels. Pharmacologic conversion of ADRN into MES cells elicited consistent and robust changes in the expression of telomere-related proteins. Conversely, stringent down-regulation of telomerase activity triggers the differentiation of ADRN into MES cells, which was reversible upon telomerase up-regulation. Interestingly, the MES differentiation state is associated with elevated levels of innate immunity factors, including key components of the DNA-sensing pathway. Accordingly, MES but not ADRN cells can mount a robust response to viral infections in vitro. A gene expression signature based on telomere and cell lineage-related factors can cluster neuroblastoma tumor samples into predominantly ADRN or MES-like groups, with distinct clinical outcomes. Our findings establish a strong mechanistic connection between telomere and differentiation and suggest that manipulating telomeres may suppress malignancy not only by limiting the tumor growth potential but also by inducing tumor cell differentiation and altering its immunogenicity.


Assuntos
Diferenciação Celular , Neuroblastoma/enzimologia , Telomerase/metabolismo , Linhagem Celular Tumoral , Humanos , Células-Tronco Mesenquimais/enzimologia
4.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830075

RESUMO

This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Gangliosídeos/biossíntese , Células-Tronco Mesenquimais/enzimologia , Nucleosídeo NM23 Difosfato Quinases/farmacologia , Neurônios/enzimologia , Sialiltransferases/antagonistas & inibidores , Animais , Humanos , Sialiltransferases/metabolismo , Suínos , Porco Miniatura
5.
Biosci Rep ; 41(8)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34350461

RESUMO

Periodontitis is a series of inflammatory processes caused by bacterial infection. Parathyroid hormone (PTH) plays a critical role in bone remodeling. The present study aimed to investigate the influences of PTH on human bone marrow mesenchymal stem cells (HBMSCs) pretreated with lipopolysaccharide (LPS). The proliferative ability was measured using cell counting kit-8 (CCK-8) and flow cytometry. The optimal concentrations of PTH and LPS were determined using alkaline phosphatase (ALP) activity assay, ALP staining, and Alizarin Red staining. Osteogenic differentiation was further assessed by quantitative reverse-transcription polymerase chain reaction (RT-qPCR), Western blot analysis, and immunofluorescence staining. PTH had no effects on the proliferation of HBMSCs. Also, 100 ng/ml LPS significantly inhibited HBMSC osteogenesis, while 10-9 mol/l PTH was considered as the optimal concentration to reverse the adverse effects. Mechanistically, c-Jun N-terminal kinase (JNK) phosphorylation was activated by PTH in LPS-induced HBMSCs. SP600125, a selective inhibitor targeting JNK mitogen-activated protein kinase (MAPK) signaling, weakened the effects of PTH. Taken together, the findings revealed the role and mechanism of PTH and JNK pathway in promoting the osteogenic differentiation of LPS-induced HBMSCs, which offered an alternative for treating periodontal diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Periodontite/tratamento farmacológico , Adulto , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/patologia , Periodontite/enzimologia , Periodontite/patologia , Fosforilação , Transdução de Sinais , Adulto Jovem
6.
Cells ; 10(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207965

RESUMO

This study aims to obtain sufficient corneal endothelial cells for regenerative application. We examined the combinatory effects of Rho-associated kinase (ROCK) inhibitor Y-27632 and mesenchymal stem cell-derived conditioned medium (MSC-CM) on the proliferation and senescence of rabbit corneal endothelial cells (rCECs). rCECs were cultured in a control medium, a control medium mixed with either Y-27632 or MSC-CM, and a combinatory medium containing Y-27632 and MSC-CM. Cells were analyzed for morphology, cell size, nuclei/cytoplasmic ratio, proliferation capacity and gene expression. rCECs cultured in a combinatory culture medium showed a higher passage number, cell proliferation, and low senescence. rCECs on collagen type I film showed high expression of tight junction. The cell proliferation marker Ki-67 was positively stained either in Y-27632 or MSC-CM-containing media. Genes related to cell proliferation resulted in negligible changes in MKI67, CIP2A, and PCNA in the combinatory medium, suggesting proliferative capacity was maintained. In contrast, all of these genes were significantly downregulated in the other groups. Senescence marker ß-galactosidase-positive cells significantly decreased in either MSC-CM and/or Y-27632 mixed media. Senescence-related genes downregulated LMNB1 and MAP2K6, and upregulated MMP2. Cell cycle checkpoint genes such as CDC25C, CDCA2, and CIP2A did not vary in the combinatory medium but were significantly downregulated in either ROCK inhibitor or MSC-CM alone. These results imply the synergistic effect of combinatory culture medium on corneal endothelial cell proliferation and high cell number. This study supports high potential for translation to the development of human corneal endothelial tissue regeneration.


Assuntos
Proliferação de Células , Senescência Celular , Meios de Cultivo Condicionados/farmacologia , Endotélio Corneano/citologia , Células-Tronco Mesenquimais/citologia , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Amidas/farmacologia , Animais , Diferenciação Celular , Movimento Celular , Células Cultivadas , Endotélio Corneano/efeitos dos fármacos , Endotélio Corneano/enzimologia , Inibidores Enzimáticos/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Piridinas/farmacologia , Coelhos
7.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203758

RESUMO

Synovial fluid contains cytokines, growth factors and resident mesenchymal stem cells (MSCs). The present study aimed to (1) determine the effects of autologous and allogeneic synovial fluid on viability, proliferation and chondrogenesis of equine bone marrow MSCs (BMMSCs) and (2) compare the immunomodulatory properties of equine synovial fluid MSCs (SFMSCs) and BMMSCs after stimulation with interferon gamma (INF-γ). To meet the first aim of the study, the proliferation and viability of MSCs were evaluated by MTS and calcein AM staining assays. To induce chondrogenesis, MSCs were cultured in a medium containing TGF-ß1 or different concentrations of synovial fluid. To meet the second aim, SFMSCs and BMMSCs were stimulated with IFN-γ. The concentration of indoleamine-2,3-dioxygenase (IDO) and nitric oxide (NO) were examined. Our results show that MSCs cultured in autologous or allogeneic synovial fluid could maintain proliferation and viability activities. Synovial fluid affected chondrocyte differentiation significantly, as indicated by increased glycosaminoglycan contents, compared to the chondrogenic medium containing 5 ng/mL TGF-ß1. After culturing with IFN-γ, the conditioned media of both BMMSCs and SFMSCs showed increased concentrations of IDO, but not NO. Stimulating MSCs with synovial fluid or IFN-γ could enhance chondrogenesis and anti-inflammatory activity, respectively, suggesting that the joint environment is suitable for chondrogenesis.


Assuntos
Condrogênese/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Interferon gama/farmacologia , Células-Tronco Mesenquimais/imunologia , Líquido Sinovial/metabolismo , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Cavalos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Óxido Nítrico/metabolismo
8.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803805

RESUMO

During biomineralization, the cells generating the biominerals must be able to sense the external physical stimuli exerted by the growing mineralized tissue and change their intracellular protein composition according to these stimuli. In molluscan shell, the myosin-chitin synthases have been suggested to be the link for this communication between cells and the biomaterial. Hyaluronan synthases (HAS) belong to the same enzyme family as chitin synthases. Their product hyaluronan (HA) occurs in the bone and is supposed to have a regulatory function during bone regeneration. We hypothesize that HASes' expression and activity are controlled by fluid-induced mechanotransduction as it is known for molluscan chitin synthases. In this study, bone marrow-derived human mesenchymal stem cells (hMSCs) were exposed to fluid shear stress of 10 Pa. The RNA transcriptome was analyzed by RNA sequencing (RNAseq). HA concentrations in the supernatants were measured by ELISA. The cellular structure of hMSCs and HAS2-overexpressing hMSCs was investigated after treatment with shear stress using confocal microscopy. Fluid shear stress upregulated the expression of genes that encode proteins belonging to the HA biosynthesis and bone mineralization pathways. The HAS activity appeared to be induced. Knowledge about the regulation mechanism governing HAS expression, trafficking, enzymatic activation and quality of the HA product in hMSCs is essential to understand the biological role of HA in the bone microenvironment.


Assuntos
Hialuronan Sintases/metabolismo , Células-Tronco Mesenquimais/enzimologia , Reologia , Estresse Mecânico , Idoso , Idoso de 80 Anos ou mais , Forma Celular , Células Cultivadas , Humanos , Ácido Hialurônico/biossíntese , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Transcrição Gênica , Regulação para Cima/genética
9.
Cells ; 10(5)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925659

RESUMO

The application of physiological oxygen (physoxia) concentrations is becoming increasingly commonplace within a mammalian stem cell culture. Human mesenchymal stem cells (hMSCs) attract widespread interest for clinical application due to their unique immunomodulatory, multi-lineage potential, and regenerative capacities. Descriptions of the impact of physoxia on global DNA methylation patterns in hMSCs and the activity of enzymatic machinery responsible for its regulation remain limited. Human bone marrow-derived mesenchymal stem cells (BM-hMSCs, passage 1) isolated in reduced oxygen conditions displayed an upregulation of SOX2 in reduced oxygen conditions vs. air oxygen (21% O2, AO), while no change was noted for either OCT-4 or NANOG. DNA methylation marks 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) showed decreases in 2% O2 environment (workstation) (2% WKS). DNMT3B (DNA methyltransferase 3B) and TET1 (Ten-eleven translocation enzyme 1) displayed reduced transcription in physoxia. Consistent with transcriptional downregulation, we noted increased promoter methylation levels of DNMT3B in 2% WKS accompanied by reduced DNMT3B and TET1 protein expression. Finally, a decrease in HIF1A (Hypoxia-inducible factor 1A) gene expression in 2% WKS environment correlated with protein levels, while HIF2A was significantly higher in physoxia correlated with protein expression levels vs. AO. Together, these data have demonstrated, for the first time, that global 5mC, 5hmC, and DNMT3B are oxygen-sensitive in hMSCs. Further insights into the appropriate epigenetic regulation within hMSCs may enable increased safety and efficacy development within the therapeutic ambitions.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Células-Tronco Mesenquimais/enzimologia , Oxigênio/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto , Ar , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Feminino , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Oxigenases de Função Mista/metabolismo , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Regulação para Cima
10.
Cell Mol Life Sci ; 78(10): 4639-4651, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33787980

RESUMO

Hematopoietic system transports all necessary nutrients to the whole organism and provides the immunological protection. Blood cells have high turnover, therefore, this system must be dynamically controlled and must have broad regeneration potential. In this review, we summarize how this complex system is regulated by the heme oxygenase-1 (HO-1)-an enzyme, which degrades heme to biliverdin, ferrous ion and carbon monoxide. First, we discuss how HO-1 influences hematopoietic stem cells (HSC) self-renewal, aging and differentiation. We also describe a critical role of HO-1 in endothelial cells and mesenchymal stromal cells that constitute the specialized bone marrow niche of HSC. We further discuss the molecular and cellular mechanisms by which HO-1 modulates innate and adaptive immune responses. Finally, we highlight how modulation of HO-1 activity regulates the mobilization of bone marrow hematopoietic cells to peripheral blood. We critically discuss the issue of metalloporphyrins, commonly used pharmacological modulators of HO-1 activity, and raise the issue of their important HO-1-independent activities.


Assuntos
Envelhecimento , Diferenciação Celular , Autorrenovação Celular , Microambiente Celular , Hematopoese , Heme Oxigenase-1/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Células-Tronco Mesenquimais/enzimologia
11.
Cell Death Dis ; 12(3): 240, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664231

RESUMO

Liver diseases with different pathogenesis share common pathways of immune-mediated injury. Chitinase-3-like protein 1 (CHI3L1) was induced in both acute and chronic liver injuries, and recent studies reported that it possesses an immunosuppressive ability. CHI3L1 was also expressed in mesenchymal stem cells (MSCs), thus we investigates the role of CHI3L1 in MSC-based therapy for immune-mediated liver injury here. We found that CHI3L1 was highly expressed in human umbilical cord MSCs (hUC-MSCs). Downregulating CHI3L1 mitigated the ability of hUC-MSCs to inhibit T cell activation, proliferation and inflammatory cytokine secretion in vitro. Using Concanavalin A (Con A)-induced liver injury mouse model, we found that silencing CHI3L1 significantly abrogated the hUC-MSCs-mediated alleviation of liver injury, accompanying by weakened suppressive effects on infiltration and activation of hepatic T cells, and secretion of pro-inflammatory cytokines. In addition, recombinant CHI3L1 (rCHI3L1) administration inhibited the proliferation and function of activated T cells, and alleviated the Con A-induced liver injury in mice. Mechanistically, gene set enrichment analysis showed that JAK/STAT signalling pathway was one of the most significantly enriched gene pathways in T cells co-cultured with hUC-MSCs with CHI3L1 knockdown, and further study revealed that CHI3L1 secreted by hUC-MSCs inhibited the STAT1/3 signalling in T cells by upregulating peroxisome proliferator-activated receptor δ (PPARδ). Collectively, our data showed that CHI3L1 was a novel MSC-secreted immunosuppressive factor and provided new insights into therapeutic treatment of immune-mediated liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Proteína 1 Semelhante à Quitinase-3/metabolismo , Fígado/enzimologia , Ativação Linfocitária , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/enzimologia , Comunicação Parácrina , Linfócitos T/enzimologia , Animais , Proliferação de Células , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Técnicas de Cocultura , Concanavalina A , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos C57BL , Fosforilação , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Linfócitos T/imunologia , Cordão Umbilical/citologia
12.
Cell Death Dis ; 12(3): 238, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664230

RESUMO

The ubiquitin protease pathway plays important role in human bone marrow-derived mesenchymal stem cell (hBMSC) differentiation, including osteogenesis. However, the function of deubiquitinating enzymes in osteogenic differentiation of hBMSCs remains poorly understood. In this study, we aimed to investigate the role of ubiquitin-specific protease 53 (USP53) in the osteogenic differentiation of hBMSCs. Based on re-analysis of the Gene Expression Omnibus database, USP53 was selected as a positive regulator of osteogenic differentiation in hBMSCs. Overexpression of USP53 by lentivirus enhanced osteogenesis in hBMSCs, whereas knockdown of USP53 by lentivirus inhibited osteogenesis in hBMSCs. In addition, USP53 overexpression increased the level of active ß-catenin and enhanced the osteogenic differentiation of hBMSCs. This effect was reversed by the Wnt/ß-catenin inhibitor DKK1. Mass spectrometry showed that USP53 interacted with F-box only protein 31 (FBXO31) to promote proteasomal degradation of ß-catenin. Inhibition of the osteogenic differentiation of hBMSCs by FBXO31 was partially rescued by USP53 overexpression. Animal studies showed that hBMSCs with USP53 overexpression significantly promoted bone regeneration in mice with calvarial defects. These results suggested that USP53 may be a target for gene therapy for bone regeneration.


Assuntos
Células da Medula Óssea/enzimologia , Células-Tronco Mesenquimais/enzimologia , Osteogênese , Proteases Específicas de Ubiquitina/metabolismo , Adulto , Animais , Regeneração Óssea , Estudos de Casos e Controles , Células Cultivadas , Dependovirus/genética , Proteínas F-Box/metabolismo , Vetores Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos ICR , Osteoporose/metabolismo , Osteoporose/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Crânio/metabolismo , Crânio/patologia , Crânio/cirurgia , Proteínas Supressoras de Tumor/metabolismo , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
13.
Biochem Biophys Res Commun ; 549: 221-228, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33706192

RESUMO

Human bone marrow mesenchymal stem cell (hBMSC) viability and osteogenic differentiation play a critical role in bone disorders such as osteoporosis. In the present study, we identified the aberrant PLK4 upregulation in osteoporosis and downregulation in BMSCs during osteogenic differentiation. In isolated hBMSCs, PLK4 overexpression significantly inhibited, whereas PLK4 knockdown promoted cell viability and hBMSC osteogenic differentiation. For molecular mechanism, PLK4 overexpression decreased, whereas PLK4 knockdown increased WNT1 and ß-catenin protein levels and the phosphorylation of Smad1/5/8. The Wnt/ß-catenin signaling antagonist Dickkopf 1 (DKK1) or the BMP-Smads antagonist LDN193189 dramatically suppressed hBMSC osteoblast differentiation, and partially attenuated the promotive effects of PLK4 knockdown on hBMSC osteogenic differentiation. Altogether, PLK4 overexpression impairs hBMSC viability and osteogenic differentiation potential, possibly through the Wnt/ß-catenin signaling and BMP/Smads signaling.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Osteogênese , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Sobrevivência Celular , Regulação para Baixo , Humanos , Osteogênese/efeitos dos fármacos , Proteínas Smad/metabolismo , Via de Sinalização Wnt
14.
Int J Nanomedicine ; 16: 725-740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33542627

RESUMO

PURPOSE: As a dental material, polyetheretherketone (PEEK) is bioinert that does not induce cellular response and bone/gingival tissues regeneration. This study was to develop bioactive coating on PEEK and investigate the effects of coating on cellular response. MATERIALS AND METHODS: Tantalum pentoxide (TP) coating was fabricated on PEEK surface by vacuum evaporation and responses of rat bone marrow mesenchymal stem (RBMS) cells/human gingival epithelial (HGE) were studied. RESULTS: A dense coating (around 400 nm in thickness) of TP was closely combined with PEEK (PKTP). Moreover, the coating was non-crystalline TP, which contained many small humps (around 10 nm in size), exhibiting a nanostructured surface. In addition, the roughness, hydrophilicity, surface energy, and protein adsorption of PKTP were remarkably higher than that of PEEK. Furthermore, the responses (adhesion, proliferation, and osteogenic gene expression) of RBMS cells, and responses (adhesion and proliferation) of HGE cells to PKTP were remarkably improved in comparison with PEEK. It could be suggested that the nanostructured coating of TP on PEEK played crucial roles in inducing the responses of RBMS/HGE cells. CONCLUSION: PKTP with elevated surface performances and outstanding cytocompatibility might have enormous potential for dental implant application.


Assuntos
Células Epiteliais/citologia , Gengiva/citologia , Cetonas/farmacologia , Células-Tronco Mesenquimais/citologia , Nanoestruturas/química , Óxidos/farmacologia , Polietilenoglicóis/farmacologia , Tantálio/farmacologia , Adsorção , Fosfatase Alcalina/metabolismo , Animais , Benzofenonas , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Nanoestruturas/ultraestrutura , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Polímeros , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
15.
Cell Cycle ; 20(4): 392-405, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33487075

RESUMO

As an important histone acetylase, the transcriptional coactivator P300/CBP affects target gene expression and plays a role in the maintenance of stem cell characteristics and differentiation potential. In this study, we explored the action of a highly effective selective histone acetylase inhibitor, C646, on goat adipose-derived stem cells (gADSCs), and investigated the impact of histone acetylation on the growth characteristics and the differentiation potential of ADSCs. We found that C646 blocked the cell proliferation, arrested the cell cycle, and triggered apoptosis. Notably, immunocytochemistry and western blot analyses showed that the acetylation level of histone H3K9 was increased. Moreover, although real-time quantitative PCR and western blot confirmed that P300 expression was inhibited under these conditions, the expression level of two other histone acetylases, TIP60 and PCAF, was significantly increased. Furthermore, C646 clearly promoted the differentiation of gADSCs into adipocytes and had an impact on their differentiation into neuronal cells. This study provides new insights into the epigenetic regulation of stem cell differentiation and may represent an experimental basis for the comprehension of stem cell characteristics and function. Furthermore, it is of great relevance for the application of adult stem cells to somatic cell cloning, which may improve the efficiency of large livestock cloning and foster the production of transgenic animals.


Assuntos
Benzoatos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Nitrobenzenos/farmacologia , Pirazolonas/farmacologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Cabras , Histona Acetiltransferases/metabolismo , Células-Tronco Mesenquimais/enzimologia
16.
Chem Commun (Camb) ; 57(9): 1145-1148, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33411866

RESUMO

The ability to custom-modify cell surface glycans holds great promise for treatment of a variety of diseases. We propose a glycomimetic of l-fucose that markedly inhibits the creation of sLeX by FTVI and FTVII, but has no effect on creation of LeX by FTIX. Our findings thus indicate that selective suppression of sLex display can be achieved, and STD-NMR studies surprisingly reveal that the mimetic does not compete with GDP-fucose at the enzymatic binding site.


Assuntos
Fucose/análogos & derivados , Fucose/farmacologia , Fucosiltransferases/antagonistas & inibidores , Linhagem Celular Tumoral , Fucose/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras
17.
Int J Mol Med ; 47(1): 161-170, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416107

RESUMO

The mitochondria have been proven to be involved in processes of aging; however, the mechansims through which mitoepigenetics affect the cytological behaviors of cardiomyocytes during the aging process are not yet fully understood. In the present study, two senescence models were constructed, replicative senescence (RS) and stress­induced premature senescence (SIPS), using human heart mesenchymal stem cells (HMSCs). First, the differences in age­related gene expression levels and telomere length were compared between the HMSCs in the RS and SIPS models by PCR. Subsequently, protein expression and the mitochondrial DNA (mtDNA) methylation status of cytochrome c oxidase subunit II (COX2) was measured by western blot analysis and bisulfite genomic sequencing (BSP). Finally, the value of the DNA methyltransferase (Dnmt) inhibitor, 5­aza­2'­deoxycytidine (AdC), in delaying the senescence of HMSCs was evaluated. It was found that the p16, p27 and p53 mRNA expression levels increased in the senescent cells, whereas p21 mRNA expression did not. It was also found that telomere shortening only occurred in the RS model, but not in the SIPS model. Along with the senescence of HMSCs, COX2 gene methylation increased and its protein expression level significantly decreased. It was demonstrated that AdC inhibited COX2 methylation and downregulated COX2 expression. The addition of exogenous COX2 or the administration of AdC promoted cell proliferation and delayed cell aging. On the whole, the present study demonstrates that COX2 methylation and downregulation are biomarkers of HMSC senescence. Thus, COX2 may have potential for use as a therapeutic target of cardiovascular diseases and this warrants further investigation.


Assuntos
Senescência Celular , Metilação de DNA , DNA Mitocondrial/metabolismo , Regulação para Baixo , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Regulação Enzimológica da Expressão Gênica , Células-Tronco Mesenquimais/enzimologia , Mitocôndrias Cardíacas/enzimologia , Miocárdio/enzimologia , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Mitocôndrias Cardíacas/genética
18.
J Cell Physiol ; 236(6): 4273-4289, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33452710

RESUMO

While mesenchymal stem cells (MSCs) have been widely used to repair radiation-induced bone damage, the molecular mechanism underlying the effects of MSCs in the maintenance of bone homeostasis under radiation stress remains largely unknown. In this study, the role and mechanisms of R-spondin 1 (Rspo1)-leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) axis on the initiation of self-defense of bone mesenchymal stem cells (BMSCs) and maintenance of bone homeostasis under radiation stress were investigated. Interestingly, radiation increased levels of Rspo1 and LGR4 in BMSCs. siRNA knockdown of Rspo1 or LGR4 aggravated radiation-induced impairment of self-renewal ability and osteogenic differentiation potential of BMSCs. However, exogenous Rspo1 significantly attenuated radiation-induced depletion of BMSCs, and promoted the lineage shift towards osteoblasts. This alteration was associated with the reversal of mammalian target of rapamycin (mTOR) activation and autophagy decrement. Pharmacological and genetic blockade of autophagy attenuated the radio-protective effects of Rspo1, rendering BMSCs more vulnerable to radiation-induced injury. Then bone radiation injury was induced in C57BL6J mice to further determine the radio-protective effects of Rspo1. In mice, administration of Rspo1 recombinant protein alleviated radiation-induced bone loss. Our results uncover that Rspo1-LGR4-mTOR-autophagy axis are key mechanisms by which BMSCs initiate self-defense against radiation and maintain bone homeostasis. Targeting Rspo1-LGR4 may provide a novel strategy for the intervention of radiation-induced bone damage.


Assuntos
Autofagia , Doenças Ósseas/prevenção & controle , Células-Tronco Mesenquimais/enzimologia , Lesões por Radiação/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Trombospondinas/metabolismo , Animais , Autofagia/efeitos da radiação , Doenças Ósseas/enzimologia , Doenças Ósseas/genética , Doenças Ósseas/patologia , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Células Cultivadas , Dano ao DNA , Modelos Animais de Doenças , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos Endogâmicos C57BL , Osteogênese , Lesões por Radiação/enzimologia , Lesões por Radiação/genética , Lesões por Radiação/patologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Trombospondinas/genética
19.
Cardiovasc Res ; 117(3): 756-766, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32339220

RESUMO

AIMS: Diabetes is a conventional risk factor for atherosclerotic cardiovascular disease and myocardial infarction (MI) is the most common cause of death among these patients. Mesenchymal stromal cells (MSCs) in patients with type 2 diabetes mellitus (T2DM) and atherosclerosis have impaired ability to suppress activated T-cells (i.e. reduced immunopotency). This is mediated by an inflammatory shift in MSC-secreted soluble factors (i.e. pro-inflammatory secretome) and can contribute to the reduced therapeutic effects of autologous T2DM and atherosclerosis-MSC post-MI. The signalling pathways driving the altered secretome of atherosclerosis- and T2DM-MSC are unknown. Specifically, the effect of IκB kinase ß (IKKß) modulation, a key regulator of inflammatory responses, on the immunopotency of MSCs from T2DM patients with advanced atherosclerosis has not been studied. METHODS AND RESULTS: MSCs were isolated from adipose tissue obtained from patients with (i) atherosclerosis and T2DM (atherosclerosis+T2DM MSCs, n = 17) and (ii) atherosclerosis without T2DM (atherosclerosis MSCs, n = 17). MSCs from atherosclerosis+T2DM individuals displayed an inflammatory senescent phenotype and constitutively expressed active forms of effectors of the canonical IKKß nuclear factor-κB transcription factors inflammatory pathway. Importantly, this constitutive pro-inflammatory IKKß signature resulted in an altered secretome and impaired in vitro immunopotency and in vivo healing capacity in an acute MI model. Notably, treatment with a selective IKKß inhibitor or IKKß knockdown (KD) (clustered regularly interspaced short palindromic repeats/Cas9-mediated IKKß KD) in atherosclerosis+T2DM MSCs reduced the production of pro-inflammatory secretome, increased survival, and rescued their immunopotency both in vitro and in vivo. CONCLUSIONS: Constitutively active IKKß reduces the immunopotency of atherosclerosis+T2DM MSC by changing their secretome composition. Modulation of IKKß in atherosclerosis+T2DM MSCs enhances their myocardial repair ability.


Assuntos
Aterosclerose/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Quinase I-kappa B/metabolismo , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/enzimologia , Idoso , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Senescência Celular , Técnicas de Cocultura , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Ativação Linfocitária , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/cirurgia , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Secretoma , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
Mol Med Rep ; 23(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300048

RESUMO

Osteoblasts are the main functional cells in bone formation, which are responsible for the synthesis, secretion and mineralization of bone matrix. The PI3K/AKT signaling pathway is strongly associated with the differentiation and survival of osteoblasts. The 3­phosphoinositide­dependent protein kinase­1 (PDK­1) protein is considered the master upstream lipid kinase of the PI3K/AKT cascade. The present study aimed to investigate the role of PDK­1 in the process of mouse osteoblast differentiation in vitro. In the BX­912 group, BX­912, a specific inhibitor of PDK­1, was added to osteoblast induction medium (OBM) to treat bone marrow mesenchymal stem cells (BMSCs), whereas the control group was treated with OBM alone. Homozygote PDK1flox/flox mice were designed and generated, and were used to obtain BMSCsPDK1flox/flox. Subsequently, an adenovirus containing Cre recombinase enzyme (pHBAd­cre­EGFP) was used to disrupt the PDK­1 gene in BMSCsPDK1flox/flox; this served as the pHBAd­cre­EGFP group and the efficiency of the disruption was verified. Western blot analysis demonstrated that the protein expression levels of phosphorylated (p)­PDK1 and p­AKT were gradually increased during the osteoblast differentiation process. Notably, BX­912 treatment and disruption of the PDK­1 gene with pHBAd­cre­EGFP effectively reduced the number of alkaline phosphatase (ALP)­positive cells and the optical density value of ALP activity, as well as the formation of cell mineralization. The mRNA expression levels of PDK­1 in the pHBAd­cre­EGFP group were significantly downregulated compared with those in the empty vector virus group on days 3­7. The mRNA expression levels of the osteoblast­related genes RUNX2, osteocalcin and collagen I were significantly decreased in the BX­912 and pHBAd­cre­EGFP groups on days 7 and 21 compared with those in the control and empty vector virus groups. Overall, the results indicated that BX­912 and disruption of the PDK­1 gene in vitro significantly inhibited the differentiation and maturation of osteoblasts. These experimental results provided an experimental and theoretical basis for the role of PDK­1 in osteoblasts.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Células da Medula Óssea/enzimologia , Diferenciação Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Osteoblastos/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/antagonistas & inibidores , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/biossíntese , Animais , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA